کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1895689 1533671 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fokker–Planck equation on fractal curves
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Fokker–Planck equation on fractal curves
چکیده انگلیسی

A Fokker–Planck equation on fractal curves is obtained, starting from Chapmann–Kolmogorov equation on fractal curves. This is done using the recently developed calculus on fractals, which allows one to write differential equations on fractal curves. As an important special case, the diffusion and drift coefficients are obtained, for a suitable transition probability to get the diffusion equation on fractal curves. This equation is of first order in time, and, in space variable it involves derivatives of order α, α being the dimension of the curve. An exact solution of this equation with localized initial condition shows departure from ordinary diffusive behavior due to underlying fractal space in which diffusion is taking place and manifests a subdiffusive behavior. We further point out that the dimension of the fractal path can be estimated from the distribution function.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 52, July 2013, Pages 30–35
نویسندگان
, , ,