کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1895780 1533678 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Estimate of the number of zeros of Abelian integrals for a perturbation of hyperelliptic Hamiltonian system with nilpotent center
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Estimate of the number of zeros of Abelian integrals for a perturbation of hyperelliptic Hamiltonian system with nilpotent center
چکیده انگلیسی

In this paper, we present a complete study of the zeros of Abelian integrals obtained by integrating the 1-form (α + βx + γ x2)ydx   over the compact level curves of the hyperelliptic Hamiltonian of degree five H(x,y)=y22+14x4-15x5. Such a family of compact level curves surround a nilpotent center. It is proved that the lowest upper bound of the number of the isolated zeros of Abelian integral is two in any compact period annulus, and there exists some α, β and γ such that system could appear at least two limit cycles bifurcating from the nilpotent center. The proof relies on the Chebyshev criterion for Abelian integrals (Grau et al, Trans Amer Math Soc 2011) and some techniques in polynomial algebra.


► The perturbation from a quintic Hamiltonian system with a nilpotent center.
► The cyclicity of the period annulus by Chebyshev criterion for abelian integral.
► The proof relies on some techniques in polynomial algebra and real analysis.
► At least two limit cycles could appear by perturbing the nilpotent center.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 45, Issues 9–10, September–October 2012, Pages 1140–1146
نویسندگان
,