کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1895880 1044397 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A family of integrable differential–difference equations, its bi-Hamiltonian structure and binary nonlinearization of the Lax pairs and adjoint Lax pairs
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
A family of integrable differential–difference equations, its bi-Hamiltonian structure and binary nonlinearization of the Lax pairs and adjoint Lax pairs
چکیده انگلیسی

A family of integrable differential–difference equations is derived by the method of Lax pairs. A discrete Hamiltonian operator involving two arbitrary real parameters is introduced. When the parameters are suitably selected, a pair of discrete Hamiltonian operators is presented. Bi-Hamiltonian structure of obtained family is established by discrete trace identity. Then, Liouville integrability for the obtained family is proved. Ultimately, through the binary nonlinearization of the Lax pairs and adjoint Lax pairs, every differential–difference equation in obtained family is factored by an integrable symplectic map and a finite-dimensional integrable system in Liouville sense.


► We deduce a family of integrable differential–difference equations.
► We present a discrete Hamiltonian operator involving two arbitrary real parameters.
► We establish the bi-Hamiltonian structure for obtained integrable family.
► Liouvolle integrability of the obtained family is demonstrated.
► Every equation in obtained family is factored through the binary nonlinearization.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 45, Issue 4, April 2012, Pages 444–453
نویسندگان
,