کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1896591 | 1044442 | 2007 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new general algebraic method with symbolic computation to construct new exact analytical solution for a (2Â +Â 1)-dimensional cubic nonlinear Schrödinger equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Based on a new general ansätz, a new general algebraic method named improved Riccati equation rational expansion method is devised for constructing multiple nontravelling wave solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recover some known solutions, but also find some new and general solutions. With the aid of symbolic computation, we choose the (2Â +Â 1)-dimensional cubic nonlinear Schrödinger equation to illustrate the method. As a result, six families of new exact analytical solutions for this equation are found, which include some new and more general exact rational form soliton-like solutions and triangular periodic-like solutions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 32, Issue 3, May 2007, Pages 1101-1107
Journal: Chaos, Solitons & Fractals - Volume 32, Issue 3, May 2007, Pages 1101-1107
نویسندگان
Ying Zheng, Yuanyuan Zhang, Hongqing Zhang,