کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1896591 1044442 2007 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new general algebraic method with symbolic computation to construct new exact analytical solution for a (2 + 1)-dimensional cubic nonlinear Schrödinger equation
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
A new general algebraic method with symbolic computation to construct new exact analytical solution for a (2 + 1)-dimensional cubic nonlinear Schrödinger equation
چکیده انگلیسی
Based on a new general ansätz, a new general algebraic method named improved Riccati equation rational expansion method is devised for constructing multiple nontravelling wave solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recover some known solutions, but also find some new and general solutions. With the aid of symbolic computation, we choose the (2 + 1)-dimensional cubic nonlinear Schrödinger equation to illustrate the method. As a result, six families of new exact analytical solutions for this equation are found, which include some new and more general exact rational form soliton-like solutions and triangular periodic-like solutions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 32, Issue 3, May 2007, Pages 1101-1107
نویسندگان
, , ,