کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1896775 1044454 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On limit cycles of the Liénard equation with Z2 symmetry
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
On limit cycles of the Liénard equation with Z2 symmetry
چکیده انگلیسی

This paper considers the limit cycles in the Liénard equation, described by x¨+f(x)x˙+g(x)=0, with Z2 symmetry (i.e., the vector filed is symmetric with the y-axis). Particular attention is given to the existence of small-amplitude (local) limit cycles around fine focus points when g(x) is a third-degree, odd polynomial function and f(x) is an even function. Such a system has three fixed points on the x-axis, with one saddle point at the origin and two linear centres which are symmetric with the origin. Based on normal form computation, it is shown that such a system can generate more limit cycles than the existing results for which only the origin is considered. In general, such a Liénard equation can have 2m small limit cycles, i.e., H(2m, 3) ⩾ 2m, where H denotes the Hilbert number of the system, 2m and 3 are the degrees of f and g, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 31, Issue 3, February 2007, Pages 617–630
نویسندگان
, ,