کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1896790 | 1044454 | 2007 | 8 صفحه PDF | دانلود رایگان |

Motivated by Mandelbrot’s idea of referring to lacunarity of Cantor sets in terms of departure from translation invariance, Nekka and Li studied the properties of these translation sets and showed how they can be used for the classification purpose. In this paper, we pursue this study on a class of Moran sets with their rational translates. We also get the fractal structure of intersection I(x, y) of a class of Moran sets with their rational translates, and the formula of the box-counting dimension. We find that the Hausdorff measures of these sets form a discrete spectrum whose non-zero values come only from shifting vector with the expansion in fraction of (x, y). Concretely, when (x, y) has a finite expansion in fraction, a very brief calculation formula of the measure is given.
Journal: Chaos, Solitons & Fractals - Volume 31, Issue 3, February 2007, Pages 757–764