کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1898001 | 1044623 | 2007 | 13 صفحه PDF | دانلود رایگان |

It has been known that noise in a stochastically perturbed dynamical system can destroy what was the original zero-noise case barriers in the phase space (pseudobarrier). Noise can cause the basin hopping. We use the Frobenius–Perron operator and its finite rank approximation by the Ulam–Galerkin method to study transport mechanism of a noisy map. In order to identify the regions of high transport activity in the phase space and to determine flux across the pseudobarriers, we adapt a new graph theoretical method which was developed to detect active pseudobarriers in the original phase space of the stochastic dynamic. Previous methods to identify basins and basin barriers require a priori knowledge of a mathematical model of the system, and hence cannot be applied to observed time series data of which a mathematical model is not known. Here we describe a novel graph method based on optimization of the modularity measure of a network and introduce its application for determining pseudobarriers in the phase space of a multi-stable system only known through observed data.
Journal: Physica D: Nonlinear Phenomena - Volume 231, Issue 2, 15 July 2007, Pages 95–107