کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1898926 | 1044803 | 2007 | 20 صفحه PDF | دانلود رایگان |

Egorov’s theorem for transversally elliptic operators, acting on sections of a vector bundle over a compact foliated manifold, is proved. This theorem relates the quantum evolution of transverse pseudodifferential operators determined by a first-order transversally elliptic operator with the (classical) evolution of its symbols determined by the parallel transport along the orbits of the associated transverse bicharacteristic flow. For a particular case of a transverse Dirac operator, the transverse bicharacteristic flow is shown to be given by the transverse geodesic flow and the parallel transport by the parallel transport determined by the transverse Levi-Civita connection. These results allow us to describe the noncommutative geodesic flow in noncommutative geometry of Riemannian foliations.
Journal: Journal of Geometry and Physics - Volume 57, Issue 11, October 2007, Pages 2345–2364