کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1899741 1534062 2010 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Reduction theory for symmetry breaking with applications to nematic systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Reduction theory for symmetry breaking with applications to nematic systems
چکیده انگلیسی

We formulate Euler–Poincaré and Lagrange–Poincaré equations for systems with broken symmetry. We specialize the general theory to present explicit equations of motion for nematic systems, ranging from single nematic molecules to biaxial liquid crystals. The geometric construction applies to order parameter spaces consisting of either unsigned unit vectors (directors) or symmetric matrices (alignment tensors). On the Hamiltonian side, we provide the corresponding Poisson brackets in both Lie–Poisson and Hamilton–Poincaré formulations. The explicit form of the helicity invariant for uniaxial nematics is also presented, together with a whole class of invariant quantities (Casimirs) for two-dimensional incompressible flows.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 239, Issues 20–22, 15 October 2010, Pages 1929–1947
نویسندگان
, ,