کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2012193 1067027 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Metformin affects macrophages’ phenotype and improves the activity of glutathione peroxidase, superoxide dismutase, catalase and decreases malondialdehyde concentration in a partially AMPK-independent manner in LPS-stimulated human monocytes/macrophages
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Metformin affects macrophages’ phenotype and improves the activity of glutathione peroxidase, superoxide dismutase, catalase and decreases malondialdehyde concentration in a partially AMPK-independent manner in LPS-stimulated human monocytes/macrophages
چکیده انگلیسی

BackgroundDiabetic patients experience accelerated atherosclerosis. Metformin is a cornerstone of the current therapy of type 2 diabetes. Macrophages are the key cells associated with the development of atherosclerotic plaques. Therefore, our aim was to assess the in vitro effects of metformin on macrophages and its influence on the mechanisms involved in the development of atherosclerosis.Materials and methodsPeripheral blood mononuclear cells were obtained from the group including 16 age-matched healthy non-smoking volunteers aged 18–40 years. Monocytes were further incubated with metformin, LPS and compound C – a pharmacological inhibitor of AMPK. The impact of metformin on oxidative stress markers, antioxidative properties, inflammatory cytokines and phenotypical markers of macrophages was studied.ResultsWe showed that macrophages treated with metformin expressed less reactive oxygen species (ROS), which resulted from increased antioxidative potential. Furthermore, a reduction in inflammatory cytokines was observed. We also observed a phenotypic shift toward the alternative activation of macrophages that was induced by metformin. All the aforementioned results resulted from AMPK activation, but a residual activity of metformin after AMPK blockade was still noticeable even after inhibition of AMPK by compound C.ConclusionsAuthors believe that metformin-based therapy, a cornerstone in diabetes therapy, not only improves the prognosis of diabetics by reducing blood glucose but also by reducing oxidative stress, inflammatory cytokine production and the shift toward alternative activation of macrophages.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pharmacological Reports - Volume 66, Issue 3, June 2014, Pages 418–429
نویسندگان
, , , , , , , , ,