کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2025052 1069978 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Organic carbon and stable 13C isotope in conservation agriculture and conventional systems
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش خاک شناسی
پیش نمایش صفحه اول مقاله
Organic carbon and stable 13C isotope in conservation agriculture and conventional systems
چکیده انگلیسی

Conservation agriculture might have the potential to increase soil organic C content compared to conventional tillage based systems. The present study quantified soil organic carbon (SOC) and soil C derived from C3 (wheat) and C4 (maize) plant species using δ13C stable isotope. Soil with 16 y of continuous application of zero tillage (ZT) or conventional tillage (CT), monoculture (M) or rotation (R) of wheat and maize, and with (+r) and without retention (−r) in the field of crop residues were studied in the central highlands of Mexico. The highest SOC content was found in the 0–5 cm layer under ZTM and ZTR with residues retention. The soil cultivated with maize showed a higher SOC content in the 0–10 cm layer with residue retention than without residue. In the 10–20 cm layer, the highest SOC content was found in the CT treatment with residue retention. The SOC stock expressed as equivalent soil mass was greatest in the 0–20 cm layer of the ZTM (wheat and maize) and ZTR cultivated treatments with residue retention. After 16 y, the highest content of soil δ13C was found in ZTM + r and CTM + r treated soil cultivated with maize; −16.56‰ and −18.08‰ in the 0–5 cm layer, −18.41‰ and −18.02‰ in the 5–10 cm layer and −18.59‰ and −18.72‰ in the 10–20 cm layer respectively. All treatments had a higher percentages of C–C3 (derived from wheat residues or the earlier forest) than C–C4 (derived from maize residues). The highest percentages of C–C4, was found in ZTM + r and CTM + r treated soil cultivated with maize, i.e. 33.0% and 13.0% in 0–5 cm layer, 9.1% and 14.3% in the 5–10 cm layer and 5.0% and 6.8% in 10–20 cm layer, respectively. The gross SOC turnover was lower in soil with residue retention than without residues. It was found that the ZT system with residue retention and rotation with wheat is a practice with a potential to retain organic carbon in soil.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil Biology and Biochemistry - Volume 42, Issue 4, April 2010, Pages 551–557
نویسندگان
, , , , , , , ,