کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2029570 1070630 2006 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Molecular docking simulations of steroid substrates into human cytosolic hydroxysteroid dehydrogenases (AKR1C1 and AKR1C2): Insights into positional and stereochemical preferences
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Molecular docking simulations of steroid substrates into human cytosolic hydroxysteroid dehydrogenases (AKR1C1 and AKR1C2): Insights into positional and stereochemical preferences
چکیده انگلیسی

AKR1C1 and AKR1C2 are human cytosolic hydroxysteroid dehydrogenases, which play pivotal roles in the metabolism and action of natural and synthetic steroid hormones. The two enzymes are highly homologous, and have distinct positional and stereochemical preferences with various substrates. We performed molecular docking simulations of three steroid substrates, including an androgen (5α-dihydrotestosterone, DHT), a progestin (progesterone, PRO), and a synthetic hormone ([7α,17α]-17-hydroxy-7-methyl-19-norpregn-5(10)-en-20-yn-3-one or tibolone, TIB), into the active sites of the two enzymes. For each substrate and enzyme pair, the activity inferred by the “productive” docking models (in which the spatial arrangement of the steroid and the cofactor would permit a reaction) matched the experimentally observed positional and stereochemical outcome. These productive conformations were energetically and statistically favored except for TIB and PRO with AKR1C2, where experimentally strong substrate inhibition and low activity were observed, respectively. Results showed that (i) a 3-ketosteroid (DHT) and a 20-ketosteroid (PRO) were reduced by AKR1C1 since the carbonyl groups could occupy the same position by “backwards” binding of steroids; (ii) 3α-reduced (DHT) and 3β-reduced (TIB) products were formed by AKR1C2 since the angular methyl groups of the steroids were inverted by “upside-down” binding of steroids; and (iii) the 3β- and 3α-reduction of DHT by AKR1C1 and AKR1C2, respectively occurred since the steroids employed a “swinging” motion to present opposite faces to the cofactor. Favorable nonproductive modes were observed with all substrates in both enzymes in which the steroid was bound at a “near-entry” position and/or an “in-middle” position, which may influence the reaction coordinate.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Steroids - Volume 71, Issue 5, May 2006, Pages 380–391
نویسندگان
, ,