کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2038509 | 1072376 | 2006 | 15 صفحه PDF | دانلود رایگان |

SummaryDNA-responsive checkpoints prevent cell-cycle progression following DNA damage or replication inhibition. The mitotic activator Cdc25 is suppressed by checkpoints through inhibitory phosphorylation at Ser287 (Xenopus numbering) and docking of 14-3-3. Ser287 phosphorylation is a major locus of G2/M checkpoint control, although several checkpoint-independent kinases can phosphorylate this site. We reported previously that mitotic entry requires 14-3-3 removal and Ser287 dephosphorylation. We show here that DNA-responsive checkpoints also activate PP2A/B56δ phosphatase complexes to dephosphorylate Cdc25 at a site distinct from Ser287 (T138), the phosphorylation of which is required for 14-3-3 release. However, phosphorylation of T138 is not sufficient for 14-3-3 release from Cdc25. Our data suggest that creation of a 14-3-3 “sink,” consisting of phosphorylated 14-3-3 binding intermediate filament proteins, including keratins, coupled with reduced Cdc25-14-3-3 affinity, contribute to Cdc25 activation. These observations identify PP2A/B56δ as a central checkpoint effector and suggest a mechanism for controlling 14-3-3 interactions to promote mitosis.
Journal: - Volume 127, Issue 4, 17 November 2006, Pages 759–773