کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2112569 1084400 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Systemic DNA damage accumulation under in vivo tumor growth can be inhibited by the antioxidant Tempol
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی تحقیقات سرطان
پیش نمایش صفحه اول مقاله
Systemic DNA damage accumulation under in vivo tumor growth can be inhibited by the antioxidant Tempol
چکیده انگلیسی


• Mice bearing tumors exhibited elevated complex DNA damage in normal tissues throughout the body.
• ROS are thought to cause for this systemic effect.
• Feeding mice antioxidant tempol reduced this DNA damage.
• Tempol effects were independent of the functioning adaptive immunity.

Recently we found that mice bearing subcutaneous non-metastatic tumors exhibited elevated levels of two types of complex DNA damage, i.e., double-strand breaks and oxidatively-induced clustered DNA lesions in various tissues throughout the body, both adjacent to and distant from the tumor site. This DNA damage was dependent on CCL2, a cytokine involved in the recruitment and activation of macrophages, suggesting that this systemic DNA damage was mediated via tumor-induced chronic inflammatory responses involving cytokines, activation of macrophages, and consequent free radical production. If free radicals are involved, then a diet containing an antioxidant may decrease the distant DNA damage. Here we repeated our standard protocol in cohorts of two syngeneic tumor-bearing C57BL/6NCr mice that were on a Tempol-supplemented diet. We show that double-strand break and oxidatively-induced clustered DNA lesion levels were considerably decreased, about two- to three fold, in the majority of tissues studied from the tumor-bearing mice fed the antioxidant Tempol compared to the control tumor-bearing mice. Similar results were also observed in nude mice suggesting that the Tempol effects are independent of functioning adaptive immunity. This is the first in vivo study demonstrating the effect of a dietary antioxidant on abscopal DNA damage in tissues distant from a localized source of genotoxic stress. These findings may be important for understanding the mechanisms of genomic instability and carcinogenesis caused by chronic stress-induced systemic DNA damage and for developing preventative strategies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Cancer Letters - Volume 353, Issue 2, 28 October 2014, Pages 248–257
نویسندگان
, , , , , , , , , ,