کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2119599 | 1085405 | 2012 | 12 صفحه PDF | دانلود رایگان |

Caco-2 cancer cell line is widely used to reproduce in vitro the differentiation of absorptive enterocytes of human intestinal epithelium. This cell line, when cultured over confluence for 21 days, spontaneously undergoes cell cycle arrest and differentiates with the formation of a polarized enterocyte-like monolayer. During this process, Myc protein is completely down-regulated, as occurs in normal enterocytes. Caco-2 cells differ from normal enterocytes for mutations of APC and β-catenin genes, factors known to be involved in the transcriptional control of MYC gene during enterocyte differentiation. In this paper, we investigated how Myc regulation could be achieved during Caco-2 differentiative process, notwithstanding the APC and β-catenin mutations. We highlighted the post translational regulation of Myc protein as one of the essential mechanisms that allows the exit from cell cycle and onset of differentiation of Caco-2 cells. Moreover, we found a strong correlation between Myc protein downregulation and the expression of the transcription factor Cdx2, suggesting the existence of a regulative link between these two proteins.
► Myc protein is completely down-regulated in Caco-2 differentiated cells.
► Myc downregulation requires post translational degradation.
► Myc downregulation correlates with the expression of transcription factor Cdx2.
Journal: Differentiation - Volume 83, Issue 3, March 2012, Pages 116–127