کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2145077 | 1088660 | 2009 | 8 صفحه PDF | دانلود رایگان |

Targeted disruption of the dentin sialophosphoprotein (DSPP) gene in the mice (Dspp−/−) results in dentin mineralization defects with enlarged predentin phenotype similar to human dentinogenesis imperfecta type III. Using DSPP/biglycan (Dspp−/−Bgn−/0) and DSPP/decorin (Dspp−/−Dcn−/−) double knockout mice, here we determined that the enlarged predentin layer in Dspp−/− teeth is rescued in the absence of decorin, but not in the absence of biglycan. However, Fourier transform infrared (FTIR) spectroscopy analysis reveals similar hypomineralization of dentin in both Dspp−/−Bgn−/0 and Dspp−/−Dcn−/− teeth. Atomic force microscopy (AFM) analysis of collagen fibrils in dentin shows subtle differences in the collagen fibril morphology in these genotypes. The reduction of enlarged predentin in Dspp−/−Dcn−/− mice suggests that the elevated level of decorin in Dspp−/− predentin interferes with the mineralization process at the dentin mineralization front. On the other hand, the lack of DSPP and biglycan leads to the increased number of calcospherites in Dspp−/−Bgn−/0 predentin, suggesting that a failure in coalescence of calcospherites was augmented in Dspp−/−Bgn−/0 teeth as compared to Dspp−/− teeth. These findings indicate that normal expression of small leucine rich proteoglycans, such as biglycan and decorin, plays an important role in the highly orchestrated process of dentin mineralization.
Journal: Matrix Biology - Volume 28, Issue 3, April 2009, Pages 129–136