کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2147884 | 1548589 | 2014 | 5 صفحه PDF | دانلود رایگان |
• CBMN test to analyze genotoxicity in 3T3 cells exposed to 1- and 3-MHz low-intensity ultrasound.
• 1-MHz ultrasound induces a statistically significant increase of micronucleus frequency.
• At 3-MHz the effects are not significant, even after 1 h of exposure.
• Viability of 3T3 does not seem significantly affected by 1-MHz or 3-MHz ultrasound.
• Mechanical stress of ultrasound at the nuclear level may affect chromosomal segregation of 3T3 cells.
Although medical ultrasound offers compelling opportunities to improve therapy in principle, progress in the field has been limited because of an insufficient understanding of the potential genotoxic and cytotoxic effects of ultrasound on biological systems. This paper is mainly focused on an in vitro study of effects with respect to genotoxicity and viability induced by 1- and 3-MHz medical ultrasound in murine fibroblasts (NIH-3T3) at low-intensity exposure (spatial peak temporal average intensity Ita < 0.1 W/cm2). The NIH-3T3 cells constitute a well-characterized in vitro cell model in which a genotoxic effect can be predicted by means of a reliable and precise murine cytokinesis-block micronucleus assay. A statistically significant increase in the incidence of micronuclei was observed in sonicated 3T3 cells. In particular, the effects were more evident at 1 MHz. Moreover, for each frequency investigated, the occurrence of micronuclei was comparatively more frequent with increasing time of exposure. The possible toxicological implications of the medical ultrasound employed herein deal with the existence of a window of exposure parameters (set well below the intensity of ultrasound cavitation) in which some genotoxic effects may occur without significant cytotoxicity. In this respect, they provide new insight toward the correct risk to benefit balancing of ultrasound-based treatments and for designing innovative therapeutic strategies.
Figure optionsDownload as PowerPoint slide
Journal: Mutation Research/Genetic Toxicology and Environmental Mutagenesis - Volume 772, 15 September 2014, Pages 20–24