کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2151872 | 1090029 | 2009 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Comparison of Global versus Epidermal Growth Factor Receptor Pathway Profiling for Prediction of Lapatinib Sensitivity in Bladder Cancer
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
تحقیقات سرطان
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Chemotherapy for metastatic bladder cancer is rarely curative. The recently developed small molecule, lapatinib, a dual epidermal growth factor receptor (EGFR)/human epidermal growth factor receptor-2 receptor tyrosine kinase inhibitor, might improve this situation. Recent findings suggest that identifying which patients are likely to benefit from targeted therapies is beneficial, although controversy remains regarding what types of evaluation might yield optimal candidate biomarkers of sensitivity. Here, we address this issue by developing and comparing lapatinib sensitivity prediction models for human bladder cancer cells. After empirically determining in vitro sensitivities (drug concentration necessary to cause a 50% growth inhibition) of a panel of 39 such lines to lapatinib treatment, we developed prediction models based on profiling the baseline transcriptome, the phosphorylation status of EGFR pathway signaling targets, or a combination of both data sets. We observed that models derived from microarray gene expression data showed better prediction performance (93%-98% accuracy) compared with models derived from EGFR pathway profiling of 23 selected phosphoproteins known to be involved in EGFR-driven signaling (54%-61% accuracy) or from a subset of the microarray data for transcripts in the EGFR pathway (86% accuracy). Combining microarray data and phosphoprotein profiling provided a combination model with 98% accuracy. Our findings suggest that transcriptome-wide profiling for biomarkers of lapatinib sensitivity in cancer cells provides models with excellent predictive performance and may be effectively combined with EGFR pathway phosphoprotein profiling data. These results have significant implications for the use of such tools in personalizing the approach to cancers treated with EGFR-directed targeted therapies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neoplasia - Volume 11, Issue 11, November 2009, Pages 1185-1193, IN18-IN20
Journal: Neoplasia - Volume 11, Issue 11, November 2009, Pages 1185-1193, IN18-IN20
نویسندگان
Dmytro M. Havaleshko, Steven Christopher Smith, HyungJun Cho, Sooyoung Cheon, Charles R. Owens, Jae K. Lee, Lance A. Liotta, Virginia Espina, Julia D. Wulfkuhle, Emanuel F. Petricoin, Dan Theodorescu,