کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2158916 1090845 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Autophagy is required during cycling hypoxia to lower production of reactive oxygen species
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی تحقیقات سرطان
پیش نمایش صفحه اول مقاله
Autophagy is required during cycling hypoxia to lower production of reactive oxygen species
چکیده انگلیسی

Background and purposeHuman tumors are characterized by the presence of cells that experience periodic episodes of hypoxia followed by reoxygenation. These cells are exposed to reactive oxygen species (ROS) upon reoxygenation and require adaptation to this stress by lowering ROS production or enhancing ROS-clearance for their survival. We hypothesized that autophagy, a lysosomal degradation pathway, may be involved in reducing ROS during periodic hypoxia through removal of ROS producing species.Materials and methodsHuman tumor cells (MCF-7, HT29, U373) were exposed to cycles of hypoxia (O2 < 0.02%) and reoxygenation in the absence or presence of the autophagy inhibitor chloroquine (CQ). Clonogenic survival, ROS production and mitochondrial-DNA content were assessed. In addition, A549 cells overexpressing wild-type or K63-mutated ubiquitin (K63R) were analyzed for ROS production.ResultsOur data indicate that CQ treatment sensitizes cells to cycling hypoxia, due to increased production of ROS, associated with an incapacity to reduce mitochondrial content. Addition of the ROS-scavenger N-acetyl-cysteine increased cell viability and neutralized CQ-effects. Additionally, genetic prevention of K63-linked ubiquitin chains that are required for the removal of toxic protein aggregates by autophagy, resulted in increased ROS production.ConclusionsInhibition of autophagy substantially increases cell death induced by cycling hypoxia through increased ROS production, providing an opportunity to decrease the hypoxic fraction within tumors and enhance tumor therapy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Radiotherapy and Oncology - Volume 92, Issue 3, September 2009, Pages 411–416
نویسندگان
, , , , , , , ,