کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2161357 | 1090913 | 2006 | 7 صفحه PDF | دانلود رایگان |

Background and purposeLow dose hyper-radiosensitivity (HRS) has been observed in both normal tissues and tumours. This modelling study explores the possible impact of HRS on radiation treatment planning.Patients and methodsThe interplay between volume-effect and HRS was studied in an idealized comparison of partial versus whole organ irradiation. In the further studies, CT scans of three previously scanned patients were used to estimate normal tissue complication probability (NTCP) for the kidneys after a conformal and a conventional treatment plan with and without consideration of HRS.ResultsIdealized treatment plans were compared as pairs of a conventional and a conformal plan both treating the same target volume to the same dose per fraction. Contour maps of the difference in NTCP between paired plans showed a strong dependence on the magnitude of both the volume effect and the HRS effect. For more clinically realistic treatment plans with NTCP calculated for the kidney, the balance between the sparing due to the LQ effect and the increased sensitivity due to the HRS effect was dependent on both the dose distribution and the fractionation.ConclusionsHRS may potentially affect radiotherapy treatment planning and the relative importance of HRS is larger in a tissue or organ with a pronounced volume effect. If HRS is expressed in some normal tissues or organs, this could offset much of the sparing predicted by the LQ formalism. However, in some clinical situations the NTCP calculated with correction for HRS may still be lower than the NTCP calculated from the uncorrected physical doses.
Journal: Radiotherapy and Oncology - Volume 79, Issue 1, April 2006, Pages 115–121