کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2184551 1095881 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Disruption of Helix-Capping Residues 671 and 674 Reveals a Role in HIV-1 Entry for a Specialized Hinge Segment of the Membrane Proximal External Region of gp41
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیولوژی سلول
پیش نمایش صفحه اول مقاله
Disruption of Helix-Capping Residues 671 and 674 Reveals a Role in HIV-1 Entry for a Specialized Hinge Segment of the Membrane Proximal External Region of gp41
چکیده انگلیسی


• Helix–hinge–helix motif is conserved in gp41 MPER, target for several HIV-1 broadly neutralizing antibodies.
• Double Ala mutations at MPER hinge region impair membrane fusion and viral infectivity.
• AA mutations cause structural changes and prevent helix capping at the hinge region.
• MPER hinge structure is critical despite apparent variability of exposed residues.

HIV-1 (human immunodeficiency virus type 1) uses its trimeric gp160 envelope (Env) protein consisting of non-covalently associated gp120 and gp41 subunits to mediate entry into human T lymphocytes. A facile virus fusion mechanism compensates for the sparse Env copy number observed on viral particles and includes a 22-amino-acid, lentivirus-specific adaptation at the gp41 base (amino acid residues 662–683), termed the membrane proximal external region (MPER). We show by NMR and EPR that the MPER consists of a structurally conserved pair of viral lipid-immersed helices separated by a hinge with tandem joints that can be locked by capping residues between helices. This design fosters efficient HIV-1 fusion via interconverting structures while, at the same time, affording immune escape. Disruption of both joints by double alanine mutations at Env positions 671 and 674 (AA) results in attenuation of Env-mediated cell–cell fusion and hemifusion, as well as viral infectivity mediated by both CD4-dependent and CD4-independent viruses. The potential mechanism of disruption was revealed by structural analysis of MPER conformational changes induced by AA mutation. A deeper acyl chain-buried MPER middle section and the elimination of cross-hinge rigid-body motion almost certainly impede requisite structural rearrangements during the fusion process, explaining the absence of MPER AA variants among all known naturally occurring HIV-1 viral sequences. Furthermore, those broadly neutralization antibodies directed against the HIV-1 MPER exploit the tandem joint architecture involving helix capping, thereby disrupting hinge function.

Figure optionsDownload high-quality image (131 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Molecular Biology - Volume 426, Issue 5, 6 March 2014, Pages 1095–1108
نویسندگان
, , , , , , , , , , , , , ,