کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2184797 1095930 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A New Structural Form in the SAM/Metal-Dependent O‑Methyltransferase Family: MycE from the Mycinamicin Biosynthetic Pathway
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیولوژی سلول
پیش نمایش صفحه اول مقاله
A New Structural Form in the SAM/Metal-Dependent O‑Methyltransferase Family: MycE from the Mycinamicin Biosynthetic Pathway
چکیده انگلیسی

O-linked methylation of sugar substituents is a common modification in the biosynthesis of many natural products and is catalyzed by multiple families of S-adenosyl-l-methionine (SAM or AdoMet)-dependent methyltransferases (MTs). Mycinamicins, potent antibiotics from Micromonospora griseorubida, can be methylated at two positions on a 6-deoxyallose substituent. The first methylation is catalyzed by MycE, a SAM- and metal-dependent MT. Crystal structures were determined for MycE bound to the product S-adenosyl-l-homocysteine (AdoHcy) and magnesium, both with and without the natural substrate mycinamicin VI. This represents the first structure of a natural product sugar MT in complex with its natural substrate. MycE is a tetramer of a two-domain polypeptide, comprising a C-terminal catalytic MT domain and an N-terminal auxiliary domain, which is important for quaternary assembly and for substrate binding. The symmetric MycE tetramer has a novel MT organization in which each of the four active sites is formed at the junction of three monomers within the tetramer. The active-site structure supports a mechanism in which a conserved histidine acts as a general base, and the metal ion helps to position the methyl acceptor and to stabilize a hydroxylate intermediate. A conserved tyrosine is suggested to support activity through interactions with the transferred methyl group from the SAM methyl donor. The structure of the free enzyme reveals a dramatic order–disorder transition in the active site relative to the S-adenosyl-l-homocysteine complexes, suggesting a mechanism for product/substrate exchange through concerted movement of five loops and the polypeptide C-terminus.

Graphical AbstractFigure optionsDownload high-quality image (266 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Molecular Biology - Volume 413, Issue 2, 21 October 2011, Pages 438–450
نویسندگان
, , , , , , , , ,