کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2186178 1096038 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ligand-Induced Conformational Rearrangements Promote Interaction between the Escherichia coli Enterobactin Biosynthetic Proteins EntE and EntB
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیولوژی سلول
پیش نمایش صفحه اول مقاله
Ligand-Induced Conformational Rearrangements Promote Interaction between the Escherichia coli Enterobactin Biosynthetic Proteins EntE and EntB
چکیده انگلیسی

Siderophores are small-molecule iron chelators that many bacteria synthesize and secrete in order to survive in iron-depleted environments. Biosynthesis of enterobactin, the Escherichia coli catecholate siderophore, requires adenylation of 2,3-dihydroxybenzoic acid (2,3-DHB) by the cytoplasmic enzyme EntE. The DHB-AMP product is then transferred to the active site of holo-EntB subsequent to formation of an EntE–EntB complex. Here we investigate the binding of 2,3-DHB to EntE and how DHB binding affects EntE–EntB interaction. We overexpressed and purified recombinant forms of EntE and EntB with N-terminal hexahistidine tags (H6-EntE and H6-EntB). Isothermal titration calorimetry showed that 2,3-DHB binds to H6-EntE with a 1:1 stoichiometry and a Kd of 7.4 μM. Fluorescence spectra revealed enhanced 2,3-DHB emission at 440 nm (λex = 280 nm) when bound to H6-EntE due to fluorescence resonance energy transfer (FRET) between EntE intrinsic fluorophore donors and bound 2,3-DHB acceptor. A FRET signal was not observed when H6-EntE was mixed with either 2,5-dihydroxybenzoic acid or 3,5-dihydroxybenzoic acid. The H6-EntE–2,3-DHB FRET signal was quenched by H6-EntB in a concentration-dependent manner. From these data, we were able to determine the EC50 of EntE–EntB interaction to be approximately 1.5 μM. We also found by fluorescence and CD measurements that H6-EntB can bind 2,3-DHB, resulting in conformational changes in the protein. Additional alterations in H6-EntB near-UV and far-UV CD spectra were observed upon mixture with H6-EntE and 2,3-DHB, suggesting that further conformational rearrangements occur in EntB upon interaction with substrate-loaded EntE. We also found that H6-EntB as a bait protein pulled down a higher concentration of chromosomally expressed EntE in the presence of exogenous 2,3-DHB. Taken together, our results show that binding of 2,3-DHB to EntE and EntB primes these proteins for efficient complexation, thus facilitating direct channeling of the siderophore precursor 2,3-DHB-AMP.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Molecular Biology - Volume 393, Issue 3, 30 October 2009, Pages 658–671
نویسندگان
, ,