کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2190714 | 1097812 | 2012 | 8 صفحه PDF | دانلود رایگان |

Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) is a regulator of pump function in healthy hearts. However, the mechanisms of regulation by cAMP-dependent protein kinase (PKA)-mediated cMyBP-C phosphorylation have not been completely dissociated from other myofilament substrates for PKA, especially cardiac troponin I (cTnI). We have used synchrotron X-ray diffraction in skinned trabeculae to elucidate the roles of cMyBP-C and cTnI phosphorylation in myocardial inotropy and lusitropy. Myocardium in this study was isolated from four transgenic mouse lines in which the phosphorylation state of either cMyBP-C or cTnI was constitutively altered by site-specific mutagenesis. Analysis of peak intensities in X-ray diffraction patterns from trabeculae showed that cross-bridges are displaced similarly from the thick filament and toward actin (1) when both cMyBP-C and cTnI are phosphorylated, (2) when only cMyBP-C is phosphorylated, and (3) when cMyBP-C phosphorylation is mimicked by replacement with negative charge in its PKA sites. These findings suggest that phosphorylation of cMyBP-C relieves a constraint on cross-bridges, thereby increasing the proximity of myosin to binding sites on actin. Measurements of Ca2 +-activated force in myocardium defined distinct molecular effects due to phosphorylation of cMyBP-C or co-phosphorylation with cTnI. Echocardiography revealed that mimicking the charge of cMyBP-C phosphorylation protects hearts from hypertrophy and systolic dysfunction that develops with constitutive dephosphorylation or genetic ablation, underscoring the importance of cMyBP-C phosphorylation for proper pump function.
► Muscle phosphoproteins modulate cardiac contractility to meet circulatory demands.
► Myosin binding protein-C restricts myosin access to actin which slows contraction.
► Charge associated with phosphorylation releases this constraint on myosin.
► This phosphorylation speeds contraction to allow for rapid heart pumping and filling.
Journal: Journal of Molecular and Cellular Cardiology - Volume 53, Issue 5, November 2012, Pages 609–616