کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
227906 | 464830 | 2013 | 6 صفحه PDF | دانلود رایگان |

Nowadays, since the underground waters are known as the main source for supplying the drinking water, their pollution to the organic contaminants such as methyl tert-butyl ether (MTBE) is a very significant issue. Therefore, in this study, photocatalytic degradation of MTBE was investigated in the aqueous soloution of Fe-TiO2 nanoparticale under UV irradiation (wavelenght 254 nm) in a batch reactor. The Fe-TiO2 mixed oxides were prepared by sol–gel impregnation method. The samples were characterized by X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM) and BET specfic surface area. Then, the effect of various operational parameters namely pH, catalyst loading, molar ratio of [H2O2]0/[MTBE]0 and UV light intensity on degradation of aqueous MTBE were evaluated in a batch reactor. The optimal condition to achieve the best degradation for the initial concentration of 75 ppm MTBE was found at pH 7, catalyst concentration 2 g/L, molar ratio of [H2O2]0/[MTBE]0 4, and UV irradiation 24 W. Total degradation of MTBE with initial concentration of 75 ppm was reached in optimal condition after 70 min. In addition, investigations were also carried out to determine the appropriate kinetics of MTBE degradation using UV/Fe-TiO2/H2O2 process in optimal condition.
Journal: Journal of Industrial and Engineering Chemistry - Volume 19, Issue 5, 25 September 2013, Pages 1697–1702