کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
228145 464835 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Setting properties, mechanical strength and in vivo evaluation of calcium phosphate-based bone cements
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Setting properties, mechanical strength and in vivo evaluation of calcium phosphate-based bone cements
چکیده انگلیسی

Calcium phosphate cement (CPC) is a promising material for use in minimally invasive surgery for bone defect repair due to its similarity to the mineral phase of bone, biocompatibility, bioactivity, self-setting characteristics, low setting temperature, adequate stiffness and ease of shaping in complicated geometrics. In this study, we systematically investigate the influence of preparation variables on the final properties of CPCs. We determined the effects of CPC composition, accelerators, seed hydroxyapatite and reaction temperatures on the setting times and compressive strength of CPCs based on tetracalcium phosphate (TTCP), dicalcium phosphate dehydrate (DCPD), dicalcium phosphate anhydrous (DCPA), and α-tricalcium phosphate (α-TCP). The three types of CPCs (TTCP/DCPD, TTCP/DCPA, and TTCP/α-TCP-based bone cements) were prepared by varying the amounts of seed hydroxyapatite and citric acid used as a hardening accelerator. After 24 h of incubation, all three types of bone cements exhibited the characteristic peaks attributable to hydroxyapatite (HA) without characteristic peaks of unreacted raw materials. These results indicated that the bone cements were completely converted to HA. TTCP/DCPD-based bone cements showed faster setting times than TTCP/DCPA and TTCP/α-TCP-based bone cements. As citric acid concentrations in the liquid phase increased, the setting times of all three types of bone cements gradually decreased. However, the concentrations of seed HA in the cements were not related to significant changes in setting time. The compressive strengths of CPCs were significantly influenced by composition and reaction temperature. We also studied the effects of immersion time in physiological solution on the properties of the various CPCs. In the results of in vivo tests, subjects with bone defects implanted with CPCs exhibited more bone formation than control subjects that did not receive implantations of CPCs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Industrial and Engineering Chemistry - Volume 18, Issue 1, 25 January 2012, Pages 128–136
نویسندگان
, ,