کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
230559 1427391 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Continuous supercritical hydrothermal synthesis of dispersible zero-valent copper nanoparticles for ink applications in printed electronics
ترجمه فارسی عنوان
سنتز هیدروترمال متداول فوق بحرانی هیدروترمال نانوذرات مس نامتقارن برای کاربرد جوهر در الکترونیک چاپی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی


• Surface-modified zero-valent copper nanoparticles (CuNPs) ca. 18 nm can be produced continuously in supercritical water (SCW).
• Polyvinylpyrrolidone is an effective surface modifier.
• H2 from HCOOH decomposition is sufficient for producing Cu0 from Cu(HCOO)2 in SCW.
• Reaction pathway in SCW is: Cu(HCOO)2 → Cu(OH)2 → (CuO, Cu2O) → Cu0.
• CuNPs product is stable in ethanol >30 days; no precipitates or color changes >1 year.

Surface-modified zero-valent copper nanoparticles (CuNPs) are of interest as conductive inks for applications in printed electronics. In this work, we report on the synthesis, stability and characterization of CuNPs formed with a continuous supercritical hydrothermal synthesis method. The precursor, copper formate, was fed as an aqueous solution with polyvinylpyrrolidone (PVP) surface modifier and mixed with an aqueous water and formic acid stream to have reaction conditions of 400 °C, 30 MPa and 1.1 s mean residence time. The reaction pathway seemed to proceed step-wise as the hydrolysis of copper formate, followed by dehydration to oxide products and subsequent reduction by hydrogen derived from precursor and formic acid decomposition. The formed surface-modified zero-valent CuNPs had particle sizes of ca. 18 nm, were spherical in shape and contained no oxide contaminants. The formed CuNPs were found to exhibit long-term (>1 year) stability in ethanol as evaluated by shifts in the surface plasmon resonance band of product solutions. Conductive films (0.33 μm thickness) prepared with the CuNPs had a resistivity of 16 μΩ cm. The methods reported in this work show promise for producing conductive inks for use in practical printed electronics.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of Supercritical Fluids - Volume 86, February 2014, Pages 33–40
نویسندگان
, , , , , ,