کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
230654 1427404 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Simultaneous effect of temperature and pressure on catalytic hydrothermal gasification of glucose
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Simultaneous effect of temperature and pressure on catalytic hydrothermal gasification of glucose
چکیده انگلیسی

Gasification of glucose in near- and supercritical water was investigated at temperature and pressure ranges from 400 to 600 °C and 20 to 42.5 MPa with a reaction time of 1 h. Hydrothermal gasification of glucose was performed in the absence and presence of catalyst (K2CO3) in a batch reactor. The influences of temperature and pressure in the supercritical regimes of water, catalyst were examined in relation to the yield and composition of the gases and aqueous products. The product gases were analyzed by gas chromatography, and the aqueous products were analyzed by high performance liquid chromatography. The gases produced were carbon dioxide, methane, hydrogen, carbon monoxide, and C2–C4 hydrocarbons and there was significant production of aqueous products and residue. The aqueous products composed of oxygenated compounds, including carboxylic acids (glycolic acid, formic acid, acetic acid), furfurals (furfural, 5-hydroxymethyl furfural, 5-methyl furfural), phenols (phenol, methyl phenols, hydroxy phenols, methoxy phenols), aldehydes (formaldehyde, acetaldehyde, acetone, propionaldehyde), ketones (3-methyl-2-cyclo-pentene-1-one, 2-cyclo-pentene-1-one) and their alkylated derivatives. Carbon gasification efficiencies were improved by addition of K2CO3 into the reacting system. Carbon gasification efficiency reached maximum (94%) at 600 °C and 20 MPa. The yield of hydrogen among gaseous products increased with increasing temperature and decreasing pressure.

Figure optionsDownload as PowerPoint slideHighlights
► Catalytic gasification of glucose in near- and supercritical water was investigated.
► Hydrogen yield reached maximum at 600 °C and 20 MPa.
► Methane yield was found to be maximum at 600 °C and 42.5 MPa.
► The highest carboxylic acid yield was reached in the presence of K2CO3.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of Supercritical Fluids - Volume 73, January 2013, Pages 151–160
نویسندگان
, , , ,