کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
240581 466270 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterization and quantification of the role of coherence in ultrafast quantum biological experiments using quantum master equations, atomistic simulations, and quantum process tomography
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Characterization and quantification of the role of coherence in ultrafast quantum biological experiments using quantum master equations, atomistic simulations, and quantum process tomography
چکیده انگلیسی

Long-lived electronic coherences in various photosynthetic complexes at cryogenic and room temperature have generated vigorous efforts both in theory and experiment to understand their origins and explore their potential role to biological function. The ultrafast signals resulting from the experiments that show evidence for these coherences result from many contributions to the molecular polarization. Quantum process tomography (QPT) is a technique whose goal is that of obtaining the time-evolution of all the density matrix elements based on a designed set of experiments with different preparation and measurements. The QPT procedure was conceived in the context of quantum information processing to characterize and understand general quantum evolution of controllable quantum systems, for example while carrying out quantum computational tasks. We introduce our QPT method for ultrafast experiments, and as an illustrative example, apply it to a simulation of a two-chromophore subsystem of the Fenna-Matthews-Olson photosynthetic complex, which was recently shown to have long-lived quantum coherences. Our Fenna-Matthews-Olson model is constructed using an atomistic approach to extract relevant parameters for the simulation of photosynthetic complexes that consists of a quantum mechanics/molecular mechanics approach combined with molecular dynamics and the use of state-of-the-art quantum master equations. We provide a set of methods that allow for quantifying the role of quantum coherence, dephasing, relaxation and other elementary processes in energy transfer efficiency in photosynthetic complexes, based on the information obtained from the atomistic simulations, or, using QPT, directly from the experiment. The ultimate goal of the combination of this diverse set of methodologies is to provide a reliable way of quantifying the role of long-lived quantum coherences and obtain atomistic insight of their causes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Chemistry - Volume 3, Issue 1, 2011, Pages 332-346