کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
244735 501958 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Virtual models of indoor-air-quality sensors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Virtual models of indoor-air-quality sensors
چکیده انگلیسی

A data-driven approach for modeling indoor-air-quality (IAQ) sensors used in heating, ventilation, and air conditioning (HVAC) systems is presented. The IAQ sensors considered in the paper measure three basic parameters, temperature, CO2, and relative humidity. Three models predicting values of IAQ parameters are built with various data mining algorithms. Four data mining algorithms have been tested on the HVAC data set collected at an office-type facility. The computational results produced by models built with different data mining algorithms are discussed. The neural network (NN) with multi-layer perceptron (MLP) algorithms produced the best results for all three IAQ sensors among all algorithms tested. The models built with data mining algorithms can serve as virtual IAQ sensors in buildings and be used for on-line monitoring and calibration of the IAQ sensors. The approach presented in this paper can be applied to HVAC systems in buildings beyond the type considered in this paper.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Energy - Volume 87, Issue 6, June 2010, Pages 2087–2094
نویسندگان
, , ,