کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2481562 | 1556229 | 2011 | 9 صفحه PDF | دانلود رایگان |

5-Aminolevulinic acid (5-ALA), inducing photodynamic protoporphyrin (PpIX), is a hydrophilic molecule, resulting in leashing the capacity to cross tissue barriers like stratum corneum (SC) of skin. Here, we aimed to develop 5-ALA loaded ultradeformable liposomes (UDL) with different surface charges, and to investigate their physicochemical characteristics and capability for the skin penetration and retention of 5-ALA for topical photodynamic therapy (PDT). The effects of surface charges of UDL on in vitro permeation of 5-ALA and in vivo accumulation of 5-ALA−induced PpIX in viable skin were determined and then compared with conventional neutral liposomes (nLiposome). All UDL showed smaller particle size and better deformability than nLiposome. However, entrapment efficiency of 5-ALA was similar to each vesicle. Among vesicles, the cationic UDL (cUDL) demonstrated higher stability and permeability, and could deliver 5-ALA into deep skin tissue by topical application. Moreover, the 5-ALA loaded in cUDL was long retained, and induced more amount of PpIX in viable skin than those in other UDL and nLiposome. Considering that the conversion of 5-ALA into PpIX occurs preferentially in epidermis, these results suggested that topical delivery of 5-ALA loaded in cUDL could be an interesting proposal to optimize PDT related to 5-ALA.
Journal: European Journal of Pharmaceutical Sciences - Volume 44, Issues 1–2, 18 September 2011, Pages 149–157