کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
248243 502555 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Implementing state-space methods for multizone contaminant transport
ترجمه فارسی عنوان
اجرای روش های حالت-فضایی برای حمل و نقل آلودگی چند زون
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی


• Direct analytical solutions to multizone contaminant transport problem are explored.
• Three calculation methods are compared for accuracy and speed.
• All methods show comparable accuracy for small and medium size models.
• Up to three orders of magnitude increase in speed are achievable.

The “well-mixed zone” approximation is a useful model for simulating contaminant transport in buildings. Multizone software tools such as CONTAM [1] and COMIS [2] use time-marching numerical methods to solve the resulting ordinary differential equations. By contrast, the state-space approach solves the same equations analytically [3]. A direct analytical solution, using the matrix exponential, is computationally attractive for certain applications, for example, when the airflows do not change for relatively long periods. However, for large systems, even the matrix exponential requires numerical estimation. This paper evaluates two methods for finding the matrix exponential: eigenvalue decomposition, and the Padé algorithm. In addition, it considers a variation optimised for sparse matrices, and compares against a reference backward Euler time-marching scheme.The state-space solutions can run several orders of magnitude faster than the reference method, with more significant speedups for a greater number of zones. This makes them especially valuable for applications where rapid calculation of concentration and exposure under constant air flow conditions are needed, such as real-time forecasting or monitoring of indoor contaminants. For most models, all three methods have low errors (magnitude of median fractional bias <3·10−5, normalised mean square error <3·10−7, and scaled absolute error <4·10−4). However, for the largest model considered (1701 zones) eigenvalue decomposition showed a dramatic increase in error.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Building and Environment - Volume 71, January 2014, Pages 131–139
نویسندگان
, , ,