کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2482776 1556294 2006 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Boosting support vector regression in QSAR studies of bioactivities of chemical compounds
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی اکتشاف دارویی
پیش نمایش صفحه اول مقاله
Boosting support vector regression in QSAR studies of bioactivities of chemical compounds
چکیده انگلیسی

In this paper, boosting has been coupled with SVR to develop a new method, boosting support vector regression (BSVR). BSVR is implemented by firstly constructing a series of SVR models on the various weighted versions of the original training set and then combining the predictions from the constructed SVR models to obtain integrative results by weighted median. The proposed BSVR algorithm has been used to predict toxicities of nitrobenzenes and inhibitory potency of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-lipoxygenase. As comparisons to this method, the multiple linear regression (MLR) and conventional support vector regression (SVR) have also been investigated. Experimental results have shown that the introduction of boosting drastically enhances the generalization performance of individual SVR model and BSVR is a well-performing technique in QSAR studies superior to multiple linear regression.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Pharmaceutical Sciences - Volume 28, Issue 4, July 2006, Pages 344–353
نویسندگان
, , , , , , ,