کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2496739 1556699 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A diarylheptanoid phytoestrogen from Curcuma comosa, 1,7-diphenyl-4,6-heptadien-3-ol, accelerates human osteoblast proliferation and differentiation
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیوشیمی بالینی
پیش نمایش صفحه اول مقاله
A diarylheptanoid phytoestrogen from Curcuma comosa, 1,7-diphenyl-4,6-heptadien-3-ol, accelerates human osteoblast proliferation and differentiation
چکیده انگلیسی

Curcuma comosa Roxb. is ginger-family plant used to relieve menopausal symptoms. Previous work showed that C. comosa extracts protect mice from ovariectomy-induced osteopenia with minimal effects on reproductive organs, and identified the diarylheptanoid (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (DPHD) as the major active component of C. comosa rhizomes. At 1–10 μM, DPHD increased differentiation in transformed mouse osteoblasts, but the effect of DPHD on normal bone cells was unknown. We examined the concentration dependency and mechanism of action of DPHD relative to 17β-estradiol in nontransformed human osteoblasts (h-OB). The h-OB were 10–100 fold more sensitive to DPHD than transformed osteoblasts: DPHD increased h-OB proliferation at 10 nM and, at 100 nM, activated MAP kinase signaling within 30 min. In long-term differentiation assays, responses of h-OB to DPHD were significant at 10 nM, and optimal response in most cases was at 100 nM. At 7–21 days, DPHD accelerated osteoblast differentiation, indicated by alkaline phosphatase activity and osteoblast-specific mRNA production. Effects of DPHD were eliminated by the estrogen receptor antagonist ICI182780. During differentiation, DPHD promoted early expression of osteoblast transcription factors, RUNX2 and osterix. Subsequently, DPHD accelerated production of bone structural genes, including COL1A1 and osteocalcin comparably to 17β-estradiol. In h-OB, DPHD increased the osteoprotegerin to RANKL ratio and supported mineralization more efficiently than 10 nM 17β-estradiol. We conclude that DPHD promotes human osteoblast function in vitro effectively at nanomolar concentrations, making it a promising compound to protect bone in menopausal women.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Phytomedicine - Volume 20, Issues 8–9, 15 June 2013, Pages 676–682
نویسندگان
, , , , ,