کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2497848 1556708 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inhibitions of vascular endothelial growth factor expression and foam cell formation by EGb 761, a special extract of Ginkgo biloba, in oxidatively modified low-density lipoprotein-induced human THP-1 monocytes cells
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیوشیمی بالینی
پیش نمایش صفحه اول مقاله
Inhibitions of vascular endothelial growth factor expression and foam cell formation by EGb 761, a special extract of Ginkgo biloba, in oxidatively modified low-density lipoprotein-induced human THP-1 monocytes cells
چکیده انگلیسی

It has been reported that oxidatively modified low-density lipoprotein (Ox-LDL) involvement with vascular endothelial growth factor (VEGF) and foam cell formation play an important role in atherosclerosis (AS). Protective effects of Ginkgo biloba extract (EGb 761) have been identified for some cardiovascular and neurological disorders. The aim of this study was to investigate whether Ox-LDL regulates VEGF expression in human THP-1 monocytes, as well as the effect of EGb 761 on VEGF expression and the formation of foam cells. After exposure to Ox-LDL alone or in combination with EGb 761 for up to 48 h, cell viability was measured using the MTT assay. VEGF protein content in the supernatant was analyzed by enzyme-linked immunosorbent assay (ELISA). VEGF mRNA was determined by real-time PCR. To determine the effect of EGb 761 on foam cell formation, an Ox-LDL-induced foam cell model was used. Ox-LDL inhibited the growth of THP-1 cells and EGb 761 increased the cell survival rate. Ox-LDL markedly increased VEGF expression in THP-1 cells in a time- and concentration-dependent manner, which was significantly suppressed by EGb 761. EGb 761 also inhibited monocyte/macrophage-derived foam cell formation. These results suggest that Ox-LDL is involved in the development of human AS through VEGF induction in monocytes, and that EGb 761 prevents in vitro atherogenesis, probably via downregulation of VEGF expression in monocytes and inhibition of monocyte/macrophage-derived foam cell formation. The findings suggest a mechanism for the in vivo anti-AS effect of EGb 761 and support its potential clinical use in AS.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Phytomedicine - Volume 16, Issues 2–3, March 2009, Pages 138–145
نویسندگان
, , , , , , , , ,