| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 250989 | 502919 | 2015 | 8 صفحه PDF | دانلود رایگان |
We present a tensegrity approach to the strengthening of masonry vaults and domes performed by bonding grids of fiber reinforced composites to the masonry substrate. A topology optimization of such a reinforcement technique is formulated, on accounting for a tensegrity model of the reinforced structure; a minimal mass design strategy; different yield strengths of the masonry struts and tensile composite reinforcements; and multiple loading conditions. We show that the given optimization strategy can be profitably employed to rationally design fiber-reinforced composite material reinforcements of existing or new masonry vaults and domes, making use of the safe theorem of limit analysis. A wide collection of numerical examples dealing with real-life masonry domes and vaults highlight the technical potential of the proposed approach.
Journal: Composite Structures - Volume 134, 15 December 2015, Pages 247–254
