کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
252402 | 502962 | 2012 | 10 صفحه PDF | دانلود رایگان |

A completely analytical theory is developed for the mixed mode partition of one-dimensional fracture in laminated composite beams and plates. Two sets of orthogonal pure modes are determined first. It is found that they are distinct from each other in Euler beam or plate theory and coincide at the Wang-Harvey set in Timoshenko beam or plate theory. After the Wang-Harvey set is proved to form a unique complete orthogonal pure mode basis within the contexts of both Euler and Timoshenko beam or plate theories, it is used to partition a mixed mode. Stealthy interactions are found between the Wang-Harvey pure mode I modes and mode II modes in Euler beam or plate theory, which alter the partitions of a mixed mode. The finite element method is developed to validate the analytical theories.
Journal: Composite Structures - Volume 94, Issue 2, January 2012, Pages 758–767