کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2532334 | 1558989 | 2012 | 7 صفحه PDF | دانلود رایگان |

Telmisartan exerts anti-metabolic effects beyond its angiotensin receptor blockade activities, but the mechanisms have hitherto remained elusive. We sought to elucidate the peroxisome proliferator-activated receptor-γ (PPAR-γ)-dependent and PPAR-γ-independent mechanisms underlying the anti-metabolic effects of telmisartan in white adipose tissue. Nine-week-old male C57BL/6 mice were fed with a 60% high-fat diet for 6 weeks, with 1 mg/kg telmisartan or vehicle administrated orally during the last 3 weeks. 3T3-L1 adipocytes were cultured with telmisartan either with 2-chloro-5-nitro-N-phenylbenzamide (GW9662), a selective irreversible antagonist of PPAR-γ, or compound C, an ATP-competitive inhibitor of AMPK. Western blotting and semiquantitative RT-PCR analysis were used to assess adiponectin, Sirt1, and AMPK levels. Lipid accumulation was assessed by Oil red O staining. The activation of transcription factor PPAR-γ2 was evaluated by using a luciferase reporter assay for mPPAR-γ2 expression plasmid vector. Treatment with telmisartan increased serum adiponectin levels in high-fat diet-fed mice concomitantly with an upregulation of adiponectin mRNA in visceral adipose tissue. In vitro telmisartan treatment dose-dependently increased adiponectin mRNA in 3T3-L1 cells; the increase was inhibited by compound C, but not by GW9662. Telmisartan increased expression of Sirt1 mRNA and Sirt1 protein as well as the phosphorylation of AMPK in 3T3-L1 cells. Telmisartan can increase adiponectin production in white adipose tissue partly via a PPAR-γ2-independent mechanism. Precise understanding of this molecular mechanism will require further investigation.
Journal: European Journal of Pharmacology - Volume 692, Issues 1–3, 5 October 2012, Pages 84–90