کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2534164 1559079 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Allosteric interaction of the anticholinergic drug [N-(4-phenyl)-phenacyl-l-hyoscyamine] (Phenthonium) with nicotinic receptors of post-ganglionic sympathetic neurons of the rat vas deferens
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب سلولی و مولکولی
پیش نمایش صفحه اول مقاله
Allosteric interaction of the anticholinergic drug [N-(4-phenyl)-phenacyl-l-hyoscyamine] (Phenthonium) with nicotinic receptors of post-ganglionic sympathetic neurons of the rat vas deferens
چکیده انگلیسی

Phenthonium (Phen), a quaternary analog of hyoscyamine, is a blocker of muscarinic activity and an allosteric blocker of α12βγε nicotinic receptors. Specifically, Phenthonium increases the spontaneous release of acetylcholine at the motor endplate without depolarizing the muscle or inhibiting cholinesterase activity. This paper compares Phenthonium's effects on sympathetic transmission and on ganglionic nicotinic receptor activation. Neurotransmitter release and twitch of the rat vas deferens were induced either by electrical stimulation or by 1,1-dimethyl-4-phenylpiperazine (DMPP) activation of nicotinic receptors. Contractions independent of transmitter release were induced by noradrenaline and adenosine 5′-triphosphate (ATP). Phenthonium inhibited transmitter release and depressed twitch without changing the responsiveness to noradrenaline or ATP. Twitch depression did not occur after K+-channel blockade with 4-aminopyridine (4-AP) or charybdotoxin. DMPP had a similar effect, but high concentrations induced contraction of non-stimulated organs. Incubation of Phenthonium inhibited further DMPP twitch depression and non-competitively depressed the contractile responses elicited by DMPP. Furthermore, mecamylamine, but neither methyllycaconitine nor atropine, blocked the contraction elicited by DMPP. Phenthonium and DMPP are K+-channel openers that primarily inhibit sympathetic transmission. Contraction induced by DMPP was probably mediated by neuronal nicotinic receptor other than the α7 subtype. The blockade of DMPP contractile response was unrelated to Phenthonium's antimuscarinic or K+-channel opening activities. Since Phenthonium's quaternary chemical structure limits its membrane diffusion, the non-competitive inhibition of DMPP excitatory responses should be linked to allosteric interaction with neuronal nicotinic receptors that putatively qualify Phenthonium as a novel modulator of cholinergic synapses.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Pharmacology - Volume 616, Issues 1–3, 15 August 2009, Pages 229–235
نویسندگان
, , , , ,