کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2535319 1559110 2008 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Responses of differentiated MC3T3-E1 osteoblast-like cells to reactive oxygen species
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب سلولی و مولکولی
پیش نمایش صفحه اول مقاله
Responses of differentiated MC3T3-E1 osteoblast-like cells to reactive oxygen species
چکیده انگلیسی

MC3T3-E1 osteoblast-like cells represent a suitable model for studying osteogenic development in vitro. The current investigation extends our previous work on the response of these cells to hydrogen peroxide by considering the effects of reactive oxygen species from other sources, and by determining whether differentiation alters sensitivity to oxidative damage. Aspects of hydrogen peroxide-mediated apoptotic and necrotic death were also examined. Cell viability was determined using the Alamar Blue assay; and accompanying morphological changes monitored by phase-contrast microscopy. Sensitivity to hydrogen peroxide increased significantly in cultures which had been induced to differentiate. Hydrogen peroxide and copper (II) ions, when combined, produced greater damage than hydrogen peroxide alone, whilst the hydroxyl radical scavengers mannitol or dimethylsulphoxide had no effect. Cyclosporin A and nicotinamide afforded partial protection. The tryptophan metabolite, 3-hydroxykynurenine significantly reduced viability, although 3-hydroxyanthranilic acid did not. The xanthine/xanthine oxidase system also reduced cell viability, an effect prevented by catalase but potentiated by superoxide dismutase. S-nitroso-N-acetylpenicillamine did not impair viability at the concentrations tested. Cultures were resistant to mitochondrial poisoning by potassium cyanide, but succumbed to 24-h exposures to 3-nitropropionic acid (1 mM). The results reveal a differential sensitivity of MC3T3-E1 cells to hydrogen peroxide-induced oxidative stress, an enhancement of sensitivity by cellular differentiation, and a potential preference for the glycolytic pathway by MC3T3-E1 cells. This study gives new insight into how bone cells may succumb to the toxic effects of oxidative stress generated by different stimuli and has relevance to conditions such as osteoporosis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Pharmacology - Volume 587, Issues 1–3, 10 June 2008, Pages 35–41
نویسندگان
, , ,