کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2538897 1559660 2013 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Individual and combined effects of rhynchophylline and ketamine on proliferation, NMDAR1 and GluA2/3 protein expression in PC12 cells
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی داروشناسی
پیش نمایش صفحه اول مقاله
Individual and combined effects of rhynchophylline and ketamine on proliferation, NMDAR1 and GluA2/3 protein expression in PC12 cells
چکیده انگلیسی

Rhynchophylline is an active component of the Uncaria species, which is a member of the Rubiaceae family. Our studies show that the downregulation of N-methyl-d-aspartate (NMDA) receptor subunit GluN2B expression in the nucleus accumbens, amygdala, medial prefrontal cortex, and hippocampal CA1 area by rhynchophylline is beneficial for the treatment of psychological dependence on amphetamines. The individual and combined effects of rhynchophylline and ketamine on proliferation and GluN1 and GluA2/3 protein expression in PC12 cells were investigated. PC12 cells were differentiated into neuron-like cells by treatment with nerve growth factor (50 ng/mL). After treatment for 48 h, differentiated PC12 cell proliferation and GluN1 and GluA2/3 protein expression were analyzed. The viability of PC12 cells was reduced by ketamine at doses of 0.50, 1.00, 1.50, and 2.00 mmol/L, with the viability of cells treated with 1.50 and 2.00 mmol/L of ketamine significantly lower than that of the control cells. However, PC12 cells treated with rhynchophylline showed no toxicity at doses of 0.25, 0.50, 0.75, or 1.00 mmol/L. While GluA2/3 protein expression was upregulated by ketamine, it was not influenced by rhynchophylline. GluN1 protein expression was downregulated by rhynchophylline (1 mmol/L), while treatment with ketamine, either alone or with rhynchophylline, had no effect. These findings demonstrate that rhynchophylline suppresses GluA2/3 expression in ketamine-induced PC12 cells and downregulates GluN1 expression. Ketamine's lack of effect on GluN1 expression offers a partial explanation for ketamine addiction and the anti-addictive properties of rhynchophylline.

Figure optionsDownload high-quality image (113 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fitoterapia - Volume 85, March 2013, Pages 125–129
نویسندگان
, , , ,