کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
255183 503354 2010 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modelling pile capacity using Gaussian process regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Modelling pile capacity using Gaussian process regression
چکیده انگلیسی

This paper investigates the potential of a Gaussian process (GP) regression approach to predict the load-bearing capacity of piles. Support vector machines (SVM) and empirical relations were used to compare the performance of the GP regression approach. The first dataset used in this study was derived from actual pile-driving records in cohesion-less soil. Out of a total of 94 pieces of data, 59 were used to train and the remaining 35 data were used to test the created models. A radial basis function and Pearson VII function kernels were used with both GP and SVM. The results from this dataset indicate improved performance by GP regression in comparison to SVM and empirical relations. To validate the performance of the GP regression approach, another dataset consisting of 38 pieces of data was considered. The results from this dataset also suggest improved performance by the Pearson VII function kernel-based GP regression modelling approach in comparison to SVM.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers and Geotechnics - Volume 37, Issues 7–8, November 2010, Pages 942–947
نویسندگان
, ,