کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2576508 | 1561356 | 2007 | 4 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Self-organizing homotopy networks: Comparisons among modular network SOM, SOM of SOMs and parametric bias method
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
زیست شناسی مولکولی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The purpose of this paper is to compare self-organizing homotopy networks. Homotopy is a mathematical concept representing a continuous change between maps or functions, and it is useful in describing a theoretical aspect of the adaptability of neural networks. For this purpose, we examined three neural network architectures: the modular network self-organizing map (mnSOM), the SOM of SOMs (SOM2), and the neural network with parametric bias units (NNPB). To make comparisons, these three architectures were trained to represent a set of polynomial functions under two different conditions. The results suggest that the SOM of SOMs is the best architecture for representing homotopy naturally.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Congress Series - Volume 1301, July 2007, Pages 168–171
Journal: International Congress Series - Volume 1301, July 2007, Pages 168–171
نویسندگان
Takashi Ohkubo, Kazuhiro Tokunaga, Tetsuo Furukawa,