کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2576508 1561356 2007 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Self-organizing homotopy networks: Comparisons among modular network SOM, SOM of SOMs and parametric bias method
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شناسی مولکولی
پیش نمایش صفحه اول مقاله
Self-organizing homotopy networks: Comparisons among modular network SOM, SOM of SOMs and parametric bias method
چکیده انگلیسی

The purpose of this paper is to compare self-organizing homotopy networks. Homotopy is a mathematical concept representing a continuous change between maps or functions, and it is useful in describing a theoretical aspect of the adaptability of neural networks. For this purpose, we examined three neural network architectures: the modular network self-organizing map (mnSOM), the SOM of SOMs (SOM2), and the neural network with parametric bias units (NNPB). To make comparisons, these three architectures were trained to represent a set of polynomial functions under two different conditions. The results suggest that the SOM of SOMs is the best architecture for representing homotopy naturally.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Congress Series - Volume 1301, July 2007, Pages 168–171
نویسندگان
, , ,