کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2576987 | 1561366 | 2006 | 4 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A hybrid real-coded genetic algorithm with forgetting and its applications
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
زیست شناسی مولکولی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes a hybrid real-coded genetic algorithm with forgetting for improving the generalization ability of classification models. A crucial idea here is the introduction of structural learning with forgetting into a hybrid real-coded genetic algorithm. The proposed method has two advantages: (1) finding near optimal classification models efficiently by a hybrid technique and (2) improving the generalization ability of the resulting classification models by the forgetting technique. Applications of the proposed method to an iris classification problem well demonstrate its effectiveness. Our results indicate that it has not only high learning performance for training data, but also high generalization ability for the test data compared with conventional algorithms such as backpropagation and structural learning with forgetting.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Congress Series - Volume 1291, June 2006, Pages 189-192
Journal: International Congress Series - Volume 1291, June 2006, Pages 189-192
نویسندگان
H. Zhang, M. Ishikawa,