کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
263734 | 504082 | 2013 | 15 صفحه PDF | دانلود رایگان |

Finding cost-optimal solutions towards nearly-zero-energy buildings (nZEBs) in accordance with European energy performance of buildings directive (EPBD-recast 2010) is a challenging task. It requires exploring a huge number of possible combinations of energy-saving measures (ESMs) and energy-supply systems including renewable energy sources (RESs), under a comparative framework methodology. The current study introduces efficient, transparent, and time-saving simulation-based optimization method for such explorations. The method is applied to find the cost-optimal and nZEB energy performance levels for a study case of a single-family house in Finland. Different options of building-envelope parameters, heat-recovery units, and heating/cooling systems as well as various sizes of thermal and photovoltaic solar systems are explored as design options via three-stage optimization. The resulted economic and environmental trade-offs show that primary energy consumption ≥93 and ≤103 kWh/m2a is a cost-optimal energy performance level. It is economically feasible to achieve nZEB with 70 kWh/m2a. However, incentives (e.g., energy credits) are required to reach lower-environmental-impact houses. Investing in low-operating-cost environmentally friendly heating system (e.g. ground source heat pump) is a key element for optimal solutions. The optimal implementation of ESMs and RES depends significantly on the installed heating/cooling system and the escalation rate of the energy price.
► The EPBD-recast 2010 calls for cost-optimal nZEB solutions.
► A time-saving optimization method is introduced for wide solution-space exploration.
► Optimal combinations of energy saving and supply options are found and analyzed.
Journal: Energy and Buildings - Volume 56, January 2013, Pages 189–203