کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
274874 505381 2016 11 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Modifications to the Eigenphases Method for Face Recognition Based on SVM
ترجمه فارسی عنوان
تغییرات در روش Eigenphases برای تشخیص چهره بر اساس SVM
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی خودرو
چکیده انگلیسی

This paper presents two modifications to the eigenphases method to increase its accuracy. In the first modification, called Local Spatial Domain Eigenphases (LSDE), the face image is first segmented into blocks of N × N pixels, whose magnitudes are normalized. These blocks are then concatenated before the phase spectrum estimation, and finally Principal Component Analysis (PCA) is used for dimensionality reduction. In the second modification, called Local Frequency Domain Eigenphases (LFDE), first the face image is segmented into blocks of pixels, whose pixels are normalized. The phase spectrum of each block is estimated independently. Next, the phase spectra of all the blocks are concatenated and then are applied to the PCA stage for dimensionality reduction. The proposed approaches are evaluated using open-set and closed-set face identification, as well as identity verification, using the “AR Face Database.” The evaluation results show that the proposed modifications, using the Support Vector Machine as the classifier, perform fairly well under different illumination and partial occlusion conditions.

ResumenEste trabajo presenta dos modificaciones del método de eigenphases para aumentar su precisión. En la primera modificación llamada Local Spatial Domain Eigenphase (LSDE), la imagen del rostro se divide en bloques de N × N píxeles, cuyas magnitudes se normalizan. Estos bloques se concatenan antes de que el espectro de fase y el PCA se estimen. En la segunda modificación llamada Local Frecuency Domain Eigenphase (LFDE), después de la segmentación de la imagen en bloques de N x N píxeles, las magnitudes de los pixeles de dichos bloques se normalizan y se calcula el espectro de fase en forma independiente. Una vez que se obtiene el espectro de fase de todos los bloques, se concatenan y se procede a la aplicación del análisis de componentes principales (PCA) para reducir la dimensionalidad del problema. Las modificaciones propuestas se evalúan en la modalidad de identificación, tanto en “open set” como en “closed-set”, así también en verificación de identidad. En ambos casos se empleó la base de datos AR Face Database. Los resultados experimentales muestran que las modificaciones propuestas presentan un funcionamiento adecuado bajo diferentes condiciones de iluminación y oclusión parcial.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ingeniería, Investigación y Tecnología - Volume 17, Issue 1, January–March 2016, Pages 119–129
نویسندگان
, , , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت