کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2794838 | 1155301 | 2010 | 9 صفحه PDF | دانلود رایگان |

BackgroundAllergic rhinitis (AR) and asthma are closely related conditions that often co-exist, and are characterized by a Th2 inflammatory response where eosinophils occupy a predominant role. Strategies aimed at blocking signaling through the CC chemokine receptor 3 (CCR3) and/or the common beta chain of the IL-3, IL-5 and GM-CSF receptor (βc) efficiently reduced eosinophilic inflammation in both animal models and in asthmatic patients. This study was therefore aimed at characterizing the spatio-temporal expression pattern of βc and CCR3 using a rat model of AR.MethodsSensitized rats were challenged with ovalbumin and sacrificed at 2 h, 8 h, 16 h or 24 h post-challenge. Nasal tissues were microdissected and used for mRNA quantification by QPCR, while histological evaluation determined the presence of eosinophils and mucosubstances.ResultsAllergen-induced recruitment of eosinophils in the distal septum and turbinates was maximal at 8 h post-challenge, and was correlated with 2–4-fold increase in CCR3 and βc mRNA. Recruitment of eosinophils was also accompanied by upregulated IL-5, IL-4Rα, TNF-α and IFN-γ mRNA at early time-points. In contrast, IL-13 and MUC5AC mRNA, as well as production of mucosubstances were maximal at 24 h.Conclusionsβc and CCR3 could play important roles in the modulation of the allergic response, and their inhibition may represent a promising therapeutic approach for AR.
Journal: Cytokine - Volume 52, Issue 3, December 2010, Pages 194–202