کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2801860 1156178 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparative physiology of the piscine natriuretic peptide system
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی علوم غدد
پیش نمایش صفحه اول مقاله
Comparative physiology of the piscine natriuretic peptide system
چکیده انگلیسی

The natriuretic peptide (NP) family is a seemingly ubiquitous sodium and volume reducing endocrine system of predominantly cardiac origin. Members of the NP system include ANP, BNP, CNP, VNP, their guanylate cyclase (GC)-linked receptors (NPR-A and NPR-B), and clearance receptor (NPR-C). Through the activation of their membrane-bound GC receptors, these small peptides modulate cellular functions that affect both salt and water balance. The elucidation of piscine NP sequences, structure, and functions has steadily advanced over the past 15 years spearheaded by research from Dr. Yoshio Takei’s laboratory. The development of these homologous NPs has led to extensive research into both the evolutionary and physiological significance of NPs in fishes. One outcome has been the development of two seemingly disparate hypotheses of NP function; a role in salt excretion, the osmoregulatory hypothesis, versus a role in protecting the heart, the cardioprotective hypotheses. In the osmoregulatory hypothesis NPs are released in response to elevated ambient salinity and inhibit drinking and intestinal uptake of salt, thereby effectively reducing plasma sodium levels. In contrast, the cardioprotective theory depicts NPs acting to prevent debilitating cardiodilation from an excess of either venous or arterial pressure through vasodilation and a reduction of blood volume. These seemingly distinct hypotheses may be elements of a more general regulatory system and certainly require further investigation. Undoubtedly their resolution will not only give us a better perspective of the evolutionary basis of the NP system but will provide us with a greater appreciation of salt and water homeostasis in vertebrates.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: General and Comparative Endocrinology - Volume 157, Issue 1, 15 May 2008, Pages 21–26
نویسندگان
, ,