کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2818202 | 1160035 | 2012 | 5 صفحه PDF | دانلود رایگان |

Brachyury, a member of the T-box transcription family, has been suggested to be essential for morphogenetic movements in various processes of animal development. However, little is known about its critical transcriptional targets. In order to identify targets of Brachyury and understand the molecular mechanisms underlying morphogenetic movements, we first searched the genome sequence of Xenopus tropicalis, the only amphibian genomic sequence available, for Brachyury-binding sequences known as T-half sites, and then screened for the ones conserved between vertebrate genomes. We found three genes that have evolutionarily conserved T-half sites in the promoter regions and examined these genes experimentally to determine whether their expressions were regulated by Brachyury, using the animal cap system of Xenopus laevis embryos. Eventually, we obtained evidence that vimentin, encoding an intermediate filament protein, was a potential target of Brachyury. This is the first report to demonstrate that Brachyury might affect the cytoskeletal structure through regulating the expression of an intermediate filament protein, vimentin.
► We computationally search the regulatory regions of vertebrate genes for T-half sites.
► We examine if THS genes behave as Brachyury downstream genes by in vivo experiments.
► In silico and in vivo analyses identify vimentin as a Brachyury target candidate.
► This is the first report that vimentin might be regulated by Brachyury.
Journal: Gene - Volume 491, Issue 2, 10 January 2012, Pages 232–236