کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2828895 | 1162769 | 2010 | 8 صفحه PDF | دانلود رایگان |

A crystal structure of the putative N-carbamoylsarcosine amidase (CSHase) Ta0454 from Thermoplasma acidophilum was solved by single-wavelength anomalous diffraction and refined at a resolution of 2.35 Å. CSHases are involved in the degradation of creatinine. Ta0454 shares a similar fold and a highly conserved C-D-K catalytic triad (Cys123, Asp9, and Lys90) with the structures of three cysteine hydrolases (PDB codes 1NBA, 1IM5, and 2H0R). Molecular dynamics (MD) simulations of Ta0454/N-carbamoylsarcosine and Ta0454/pyrazinamide complexes were performed to determine the structural basis of the substrate binding pattern for each ligand. Based on the MD-simulated trajectories, the MM/PBSA method predicts binding free energies of −24.5 and −17.1 kcal/mol for the two systems, respectively. The predicted binding free energies suggest that Ta0454 is selective for N-carbamoylsarcosine over pyrazinamide, and zinc ions play an important role in the favorable substrate bound states.
Journal: Journal of Structural Biology - Volume 169, Issue 3, March 2010, Pages 304–311